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ABSTRACT

Binary logistic regression model is applied in many public health studies, that

involve binary response variable such as presence or absence of diarrhoea in a

child. In such applications, most studies in literature have focused on inferences

and implications on relevant policies. There has been little effort to exhaustively

understand the fit of the binary regression model to the data the at hand, before

making conclusions and recommendations on policies. This study focused on

utilization of the post-estimation diagnostic statistics that are available for fitting

binary regression models to data, which are usually ignored in most applications

of the model. This was done by applying diagnostic statistics that analyze the

presence of outliers, influential observations, high leverage subjects and multicollinearity

among independent variables, upon fitting binary logistic regression model to child

dirrhoea data from 2015-16 Malawi demographic and health survey. The results

showed that there were outliers and high leverage points in the model. Region

and toilet sharing variables were mostly affected by outliers. But using Cook’s

distance, the individual children did not have influence on all estimated regression

parameter values. The study recommends that analysts should throughly examine

the fit of the logistic regression model.
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CHAPTER 1

INTRODUCTION

1.1 Background

Regression methods have become important tools in data analysis that involves

describing the relationship between a dependent variable and one or more independent

variables. In some cases, the dependent variable in such relationships is categorical,

hence the logistic regression model becomes a choice to characterize the relationship.

The data under study can be in the field of health, agriculture, engineering and

education among others. When the response variable is dichotomous, a binary

logistic regression model is used while ordinal categorical responses are modeled

using ordinal logistic regression model.

When the response variable has several categories that are nominal in scale of

measurement, each with binary outcomes, then multinomial logistic regression

model is used (OConnell, 2006; Hilbe, 2009). Multinomial logistic regression is

used to predict the probability of being in a certain group compared to other

groups (Hilbe, 2009).
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Instead of directly predicting the response variable using a set of covariates,

logistic regression models probabilities of success given the covariates(Hosmer Jr,

Lemeshow, & Sturdivant, 2013; Park, 2013). When the dependent variable is

ordinal then ordinal logistic regression is used. An ordinal variable is a categorical

variable in which there is ordering of the category levels (Harrell, 2015). The

ordinal logistic regression analyzes how much closer each predictor pushes the

outcome into the next level or category of the outcome variable (Hilbe, 2009).

The term ”logistic” is used because the relationship between the covariates and

the probability of success resembles a logistic growth curve. Thus, binary logistic

regression model does not assume linearity in the relationship between the dependent

variable and independent variables. In addition, the model does not need the

variables to be normally distributed (S. K. Sarkar, Midi, & Rana, 2011).

1.2 Binary regression model and estimation

Let Y1, Y2, ..., Yn be identically and independently distributed random variables,

where each Yi ∼ Binomial(ni, θi), that is, P (Yi = 1) = θi and P (Yi = 0) =

1 − θi giving a Bernoulli as a special case of binomial experiment . Let X =

(X1, X2, ..., XP ) be a set of explanatory variables, which can be used to estimate

the parameter θi for data on Yi, that is , P (Yi = 1|X) = θi(X). Then, a binary

regression model is given by

yi = θi(X) + ϵi (1.1)
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where yTi =

[
y1, y2, · · · , yn

]
is a vector of dichotomous responses, with yi = 1

if the observed outcome is a success and 0 if it is a failure, X =



1 X11 . . . X1p

1 X12 . . . X2p

...
...

. . .
...

1 Xn1 . . . Xnp


is a design matrix of covariates that are not linearly correlated, ϵTi =

[
ϵ1, ϵ2, · · · , ϵn

]
is a vector of unknown errors that depend on θi(X). The errors ϵi have unknown

probability distribution(S. K. Sarkar et al., 2011). In addition, the relationship

between covariates and probabilities of success is given by the formula:

θi(X) =
exp(Xβ)

1 + exp(Xβ)
. (1.2)

This is the logistic function that characterizes the shape of the conditional probability

of Y given βT =

[
β1, β2, · · · , βp

]
, which are the regression coefficients. θi(X)

has values between 0 and 1 (Hosmer & Lemeshow, 2002).

From above model, one can derive the link function for the model as

log(
θi(X)

1− θi(X)
) = Xβ. (1.3)

This link function is called the logarithm of odds of success or simply the ”logit”

link, to which the model gets its name. In this case, a unit increase in the value

or level of a covariate X leads to change of logarithm of odds of success for Y

by a value of β (Hilbe, 2009). This interpretation of the coefficients in logistic

regression is said to be at coefficient scale. Alternatively, one can exponentiate
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the above equation (1.3) both sides, so that an increase in value of a covariate

will lead to a change of exp(β) in odds of success of Y . This is called odds scale

interpretation (Rawlings, Pantula, & Dickey, 2001).

1.2.1 Model estimation

Since Yi in equation 1.1 is distributed as Binomial(ni, θi(X)) with probability

mass function; f(yi, θi) =
(
ni

yi

)
θyii (1 − θi)

ni−yi , then its conditional probability

mass function can be expressed in exponential family form as:

f(yi, θi(X)) = exp[yilog(
θi(X)

1− θi(X)
) + ni log(1− θi(X)) + log

(
ni

yi

)
]. (1.4)

Hence, the likelihood function for β is given by:

L(β; yi, X) =
n∏

i=1

f(yi, θi(X))

= exp[
n∑

i=1

{(yi log(
θi(X)

1− θi(X)
)) + ni log(1− θiX) + log

(
ni

yi

)
}].

(1.5)

This gives the log-likelihood as:

l(β, yi, X) = logL(β; yi, X)

=
n∑

i=1

{(yi log
θi(X)

1− θi(X)
) + ni log(1− θi(X)) + log

(
ni

yi

)
}

=
n∑

i=1

yiXβ −
n∑

i=1

ni log[1 + exp(Xβ)] +
n∑

i=1

log

(
ni

yi

)
.

(1.6)

The goal is to find the value of β that maximizes the log-likelihood function

l(β, yi, X). The critical points of a function l(β, yi, X) are found when its first

derivative equals 0. These derivatives give score functions in respect of each
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coefficient β. Maximum likelihood is one of the parameter estimation methods

for binary logistic regression. The advantages of using maximum likelihood are

that it gives most efficient estimators if the assumptions are satisfied and it gives

unbiased estimates for large sample size (Erica, 2020). From the log-likelihood

(1.6), the score function is given by:

U(β) =
∂l(β)

∂β

=
n∑

i=1

XTYi −
n∑

i=1

(
niX

T exp(Xβ)

1 + exp(Xβ)
)

=
n∑

i=1

XT [yi − niθi(X)].

(1.7)

The maximum likelihood estimators, β̂ for model parameters β are found by

solving for β when the score functions U(β) above are equated to zero. However,

the score function equation U(β) = 0 is intractable for β. Hence, numerical

techniques are used to solve for maximum likelihood estimators β̂ from the equation

U(β) = 0. These include iterated re-weighted generalized least squares, Newton

Raphson method among others (Pregibon, 1981). With the Newton Raphson

technique, the value of β such that U(β) = 0 can be obtained by observing a

small step in β, that is from β(k) to β(k+1) that makes the score function, U(β)

almost static, i.e U(β(k+1)) not far from U(β(k)). This is essentially the slope:

∂U(β)

∂β
|β=β(k) =

U(β(k+1))− U(β(k))

β(k+1) − β(k)
= U ′(β(k)). (1.8)

If the step β(k+1) will be the required solution, such that U(β(k+1)) = 0, then one

can solve for β(k+1) in the relation of middle and right most terms in the above
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equation and obtain the Newton- Raphson iteration equation:

β(k+1) = β(k) − U(β(k))

U ′(β(k))

= β(k) − [U ′(β(k))]−1U(β(k))

= β(k) + I−1(β(k))U(β(k)),

(1.9)

where k = 0, 1, ...n is an iteration step, I(β = −E(U(β)) is the Fisher information

for parameter β. Thus, to get maximum likelihood estimators β̂ for logistic

regression model (1) using Newton-Raphson algorithm, one need a (p× 1) vector

of score functions U



β1

β2

...

βp


, the (p × p) information matrix and (p × 1) vector

of initial values of estimators



β
(0)
1

β
(0)
2

...

β
(0)
p


. This is implemented in many statistical

softwares(Kasza, 2015).

1.3 Diagnostic Statistics

Model validation is a very important step in building a statistical model. Model

diagnostic statistics have been developed to check for and detect model mis-specifications.

The validity of inferences drawn from fitting the logistic regression model to

the data depends on the model satisfying the assumptions (Hosmer, Taber, &

Lemeshow, 1991). It is very important to examine how well the model describes

6



the observed data. For example, given the observed outcomes yT = (y1, y2, ..., yn)

and their predicted values ŷT = (ŷ1, ŷ2, ..., ŷn) then one would expect the distances

(yi − ŷi) to be small for a model that fits the data well (Menard, 2002).

Diagnostic statistics are quantities calculated from the data with the aim of finding

influential data points, residuals, outliers or high leverage points so that their

effect on the inferences is known and corrected for the model to remain valid

(Nurunnabi & Nasser, 2011). Failure to do model diagnosis may lead to misleading

or incorrect inferences (Hosmer & Lemeshow, 2002). For instance, outliers to

a model cause serious problems for the application of many statistical models,

especially models that assume normal distribution for the error term (Ramsey &

Ramsey, 2007). An outlier is an observation whose value deviates so much from

the expected range as to arouse suspicions that it was generated by a different

mechanism (S. K. Sarkar et al., 2011). Outliers can be caused by human errors for

example keypunch errors, recording errors and instrument errors. Outliers may

cause errors in parameter estimation and misclassifying the outcomes, which can

cause problems when drawing inferences (Nurunnabi & Geoff, 2012). Some of the

available methods for assessing outliers include; Pearson residual , Studentized

Pearson residual and Deviance residual.

Influential observations need also to be assessed when fitting binary logistic regression.

Influential observations are defined as points which either individually or together

with several other observations have a demonstrably larger impact on the calculated

values of various estimates (Nurunnabi & Geoff, 2012). Some of the available
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methods for detecting influential points in logistic regression model are Cook’s

distance, Dffits and Dfbetas.

Multicollinearity is another problem which is needed to be addressed when fitting

logistic regression model. Multicollinearity is defined as condition where there are

dependencies among the independent variables which causes parameter estimates

to be unstable (Haque, Jawad, Cnaan, & Shabbout, 2002). Some of the available

methods for detecting multicollinearity are variance inflation factor, condition

index and variance decomposition proportions (Senaviratna & Cooray, 2019; Midi,

Sarkar, & Rana, 2010).

There are also diagnostic statitistics which assess fulfillment of model assumptions

of linearity and additivity. One of the assumption of binary logistic regression

model is that there is linear relationship between the log odds of success outcome

and the independent variables (Schreiber-Gregory, 2018). One of the methods for

checking this assumption is box-tidwell transformation. Box-tidwell transformation

measures linearity between the log odds and the continuous variables (Hilbe, 2009).

1.4 Logistic Regression Application in Diarrhoea

Studies

Diarrhoea remains one of the major causes of morbidity and mortality in infants

and children in developing countries, including Malawi. Diarrhoea is water-borne

disease which is leading cause of death among children under age of five (Getachew,
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Guadui, Tadie, & Gizaw, 2018). According to (Mwambete & Joseph, 2010),

diarrhoea is defined as condition in which there is increase in volume of stool

and number of visits to the toilet. Binary logistic regression model has been used

on a number of diarrhoea studies.

For example, (Kaombe & Namangale, 2016) used Logistic regression model in

comparison with Poisson and Bayesian regressions to investigate variations in risk

of diarrhoea in under-five children in Malawi using 2006 Malawi Multiple Indicator

(MICS) data. In their study, mother’s education, toilet sharing status, place

of residence and source of drinking water were among risk factors for childhood

diarrhoea. While, (Getachew et al., 2018) applied binary logistic regression to

model risk factors of under five child diarrhoea in rural north Gondar Zone,

Northwest Ethiopia. The study found out that number of children family members

in a household , mother education and age of under five child were significantly

associated with diarrhoea.

Another study that applied binary logistic regression model on childhood diarrhoea

was done by (Mbugua et al., 2014) using data from 2008 Kenya demographic and

health survey. In that study, place of residence was found to be useful factor for

determining the child diarrhoea.

In all the above cited studies, the binary logistic regression model was fitted

without adequate model validation assessments. Each of these studies did not

pay attention to examining outlying children, influential children and the children
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who had high leverage in the fitted probabilities of diarrhoea. The estimates and

conclusions were made without careful examination of the fit of model to the

data. This usually leads to problematic conclusions like obtaining wrong value of

coefficients.

1.5 Problem Statement

Many public health research involves dependent variable with two possible outcomes

and independent variables that are categorical or continuous (Nurunnabi & Geoff,

2012). In this case, logistic regression model is mostly used for the reasons of

ease of convenience, interpretation and computation which can be implemented

in many available statistical softwares (Hosmer et al., 1991). The validity of

inferences drawn from logistic regression model depends on assumption of the

fitted model being satisfied (S. Sarkar, Midi, & Rana, 2011).

Model diagnostics are tools that are used in assessing the appropriateness of

the model in fitting the data. Unfortunately, many studies which used logistic

regression model on diarrheoa data did not consider examining the fit of the model

as stated in previous section. When logistic regression model is applied to child

diarrhoea data, most studies in literature have focused on model description and

prediction (S. Sarkar et al., 2011). There has been little effort to exhaustively

understand the fit of the logistic regression model.
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1.6 Study Objectives

1.6.1 Main Objective

• The main objective of this study was to demonstrate utilization of the

post-estimation diagnostic statistics that are available for fitting binary regression

model to data which are usually ignored in most applications.

1.6.2 Specific objectives

• To fitting the binomial regression model to child diarrhoea data from 2015-16

Malawi demographic and health survey.

• To apply available methods of detecting outliers, influential points, multicollinearity

and leverage values in logistic regression.

1.7 Significance of the study

Logistic regression model has received massive attention in the modeling of binary

response health data. There has been little effort to exhaustively understand the

fit of the model to such data. Improving child health features highly in United

Nations sustainable development goals (SDGs) 2030. This includes aiming for

good health and well being (goal 3) and clean water and sanitation (goal 6), which

directly relates to reducing childhood diarrhoea cases (GOM, 2020). Goal number

3 of vision 2063 for Malawi is to have healthy and well-nourished citizens through

reduction of diseases including diarrhoea. Moreover, in Malawi diarrhoea among

under five children remain a big problem with 22% prevalence (NSO, 2017). So,
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there is need to fully diagnose the binary logistic regression whenever it is fitted on

diarrhoea data in order to have valid results. The findings will help in minimizing

erroneous conclusions that follow from fitting logistic regression model to diarhoea

which can help in improving child health.

1.8 Thesis structure

The thesis is structured as follows: Chapter 2 gives literature review of binary

logistic regression model diagnostic statistics . Chapter 3 presents the methodology

of the study. Chapter 4, results of the fitted model diagnostics. Chapter 5 provides

discussion and conclusion.
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CHAPTER 2

LITERATURE REVIEW

This chapter reviews theoretical framework for diagnosing logistic regression model.

The chapter reviews diagnostic statistics for outliers, diagnostic statistics for multicollinearity,

influence statistics for the logistic model and diagnostic statistics for leverage.

2.1 Diagnostic statistics for outlier assessment

An outlier is defined as an observation that highly differ from other observations

which brings suspicion that it was collected using a different way (Ahmad, Ramli,

& Midi, 2012). Outliers can come from human error like making mistakes when

entering the data and using values for missing observation as real observation

(Ahmad et al., 2012). Outliers increase error variance which lead to decrease

of power of statistical tests, alter the odds and they cause bias of estimates of

the model (Osborne, 2004). There are many diagnostics for detecting outliers.

Residual analysis can help in detecting the outliers. The residuals in logistic

regression model are not normally distributed, since the response takes values 0

and 1 (S. K. Sarkar et al., 2011). Since the errors in logistic regression are binary

in nature, so the error variance is a function of θ(X). From logistic regression
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model (1.1), the residual êi is defined as;

êi = yi − ŷi =


1− θ̂i, if yi = 1

−θ̂i, if yi = 0.

(2.1)

This type of residual is called raw or ordinary residual. Raw residual is used to

measure variation between observed and fitted values, the closer the distance from

yi to ŷi the better the model (Hilbe, 2009). The values of raw residual that are

less than -2 and greater than +2 correspond to potential outliers to the model

(S. K. Sarkar et al., 2011). There is also raw residual which is used when fitting

linear regression. The raw residual of linear regression is given by

ei = yi − ŷi (2.2)

where ŷi = Xβ (Larsen & McCleary, 1972). The values of raw residual that are

less than -2 and greater than +2 correspond to potential outliers to the linear

regression regression(Freund, Vail, & Clunies-Ross, 1961).

2.2 The Pearson’s Residual

Logistic regression is fitted with assumption that the model has important explanatory

variables and these variables are entered in correct form (Hosmer & Lemeshow,

2013). After fitting logistic regression model, there is need to check if the probabilities

accurately reflect the true outcome in the data (Hosmer & Lemeshow, 2013).

Assuming that the observed sample values of outcome are represented by yTi =

(y1, y2, ..., yn) and the estimated values by ŷTi = (ŷ1, ŷ2, ..., ŷn). Then the logistic
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regression model is considered to be fitting the data if the summary measures of

the distance between yi and ŷ are very small. The Pearson’s residual is calculated

by taking the difference between observed and fitted values and dividing by the

estimate of standard deviation of ŷi (Hosmer & Lemeshow, 2013). This is given

by;

pri =
êi√

θ̂i(X)(1− θ̂i(X))
=

yi − θ̂i(X)√
θ̂i(X)(1− θ̂i(X))

(2.3)

where θ̂i(X) are the fitted values and yi are observed values. The observations

that have higher Pearson’s residuals are suspected to be outliers (Ahmad et al.,

2012). Using Pearson’s residuals, the observation is regarded as problematic if

|pri| > 3 (LaValley & P, 2008).

2.3 Studentized Pearson Residual

Another transform of the residual (2.1) is Studentized Pearson residual. It is

measured by dividing the residual by its estimate of standard deviation (Hosmer

& Lemeshow, 2002). The standard of deviation of residual (2.1) is given by

√
θ̂i(X)(1− θ̂i(X))((1− hii) (2.4)

where hii are diagonal entries of hat matrix Ŵ 1/2(XŴX)−1XŴ
1
2 where X is the

vector of independent variables and W is a diagonal matrix with entries
√

θ(1− θ).

The Studentized Pearson residual is given by:
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Spri =
yi − θ̂i(X)√

θ̂i(X)(1− θ̂i(X))(1− hii)
=

pri√
1− hii

(2.5)

The model fits well, if the residuals are between −3 and +3 (Menard, 2002).

Similarly, the studentized residual for linear regression is found by dividing the

raw residual with estimated standard error. The studentized residual is given by

Zi =
ei√
MSE

(2.6)

The model is regarded as a good model if the graph of Zi resembles N(0,1) (Freund

et al., 1961).

2.4 Deviance Residual

This is another residual which is based on deviance or likelihood ratio chi square

statistics (Ahmad, Midi, & Ramli, 2011). The deviance residual is used to measure

the difference between any component of the log likelihood of the fitted model and

the corresponding component of log likelihood that will result if each point was

fitted correctly (S. K. Sarkar et al., 2011). It is used to identify potential outliers

(S. K. Sarkar et al., 2011). Deviance residual for i-th case in logistic regression

model is defined as;

di = sign(yi − θ̂i(X)){−2[yi log θ̂(X) + (1− yi)log(1− θ̂i(X))]}1/2. (2.7)

The deviance residual is better compared to Pearson’s residual because deviance

residual depicts normal distribution (S. K. Sarkar et al., 2011). The model is
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regarded as valid if the deviance residuals are between -2 and 2. The values of

deviance residual that are less than -2 and greater than +2 correspond to potential

outliers to the model. There is another type of deviance residual which is used in

poisson regression model. The deviance residual for poisson regression model is

given by

di = sgn(yi − exp{Xiβ̂})

√
2

{
yi log

(
yi

exp{Xiβ̂}

)
− (yi − exp{Xiβ̂})

}
. (2.8)

where β’s are coefficients and Xi’s are independent variables (Jennings, 1986).

The model is regarded as good model if di is between 0 and 1 (Davison, Gigli, &

A, 1989).

(Chen, Yang, Chen, & Chen, 2008) applied Pearson residuals, Studentized residuals

and Deviance residual on logistic regression in order to detect outliers. The study

focused on detecting the outliers and influential observations of the data from

experimental study. The results showed that 3 points were found to be outliers and

they were removed and the logistic regression was fitted again and the comparison

was made. After removing the outliers R-squared increased from 0.50 to 0.67 and

also predicative estimates were found to be better.

2.5 Diagnostic Statistics for Multicollinearity

One assumption of logistic regression is that explanatory variables should be

independent of each other. Multicollinearity is defined as a situation where independent
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variables are associated or dependent on each other (Midi et al., 2010). Let the

j-th column of the X matrix be represented by Xj, then X = [X1, X2, . . . , Xp].

Xj contains the n values of the jth independent variable. Then multicollinearity

is defined in terms of the linear dependence of the columns of X. According to

(Montgomery & Peck, 2012), the vectors X1, X2, . . . , Xp are linearly dependent if

there exist a set of constants t1, t2, . . . , tp not all zero, such that

p∑
j=1

tjXj = 0. (2.9)

Multicollinearity can be caused by ways of collecting data, model specification

and putting a lot of regressors in the model (Montgomery & Peck, 2012). Some of

the problems that can be caused by multicollinearity are unstable estimates and

inaccurate variances which can cause errors in confidence intervals and hypothesis

test (Midi et al., 2010). In other ways the p-values are decreased and confidence

intervals are increased because of collinearity (Miles, 2014).

2.5.1 Variance Inflation Factor (VIF)

Variance inflation factor is defined as the reciprocal of Tolerance where Tolerance is

defined as 1−R2 (Miles, 2014; Midi et al., 2010). VIFs and Tolerance are so much

related and they all depend on R2 (Miles, 2014). R2 is coefficient of determination

that is obtained by regressing each independent variable as dependent variable on

all other independent variables (Miles, 2014). Since Variance Inflation factor is

just reciprocal of Tolerance, given by:

V IF =
1

Tolerance
=

1

1−R2
. (2.10)
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When variance inflation factor is greater than 10, it means that there is multicollinearity

between the covariates under consideration (Midi et al., 2010).

Variance inflation was used in diagnosing the logistic regression in the study done

by (Midi et al., 2010). The study used data from the Bangladesh Demographic

and Health Survey (BDHS-2004). The dependent variable was whether the person

would like to have another child and the responses were 0 for ’no more’ and 1 for

’ have another’. Some of the independent variables were age, education level

and working status. The results showed that three independent variables were

dependent to each other or there was presence of multicollinearity in the model.

2.6 Influential statistics for the logistic model

Influential observations are cases that influence the estimation of the regression

coefficients vector and the deviance (Johnson, 1985). Influential observations

reduce the power of the test for significance of the covariates since error variance

is increased and it also causes unbiased estimates (Dhakal, 2017). Some of the

methods of detecting influential points in logistic regression model are Cook’s

distance and Dffits (Nurunnabi, Rahmatullah Imon, & Nasser, 2009).

2.6.1 Cook’s distance

Cook’s distance is used to find influential observations by finding the difference

between the regression parameter estimates β̂ and the result if the i-th data point
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is deleted (McDonald, 2002; Cook, 1977). The Cook’s distance is defined as;

CDi =
(β̂ − β̂(−i))

T (XTV X)(β̂ − β̂(−i))

pσ̂2
i = 1, 2..., n (2.11)

where β̂(−i) is the estimated parameter of β̂ with the ith observation deleted,

V is n × n diagonal containing elements θ̂i(X)(1 − θ̂i(X)), σ̂2 is the variance of

response variable and p is the number of covariates in the model (McDonald, 2002;

S. K. Sarkar et al., 2011). For logistic regression model, Cook’s distance simplifies

to;

CDi =
(spri)

2hii

1− hii

(2.12)

where spri is Standardized Pearson residual and hii is leverage points (S. K. Sarkar

et al., 2011). The Cook’s distance estimates impact of removing an observation

on maximum likelihood estimator β̂. If CDi is greater that 1, then that i-th point

is influential observation on β̂ (Nurunnabi et al., 2009). Cook’s distance is also

used in linear regression to detect influential points. The Cooks distance for linear

regression is given by

Di = (r2/P ∗MSE) ∗ (hii/(1− hii)
2) (2.13)

where ri is i-th residual, P number of independent variables in the model, MSE is

mean square error and hii is the leverage (Nurunnabi, Hadi, & Imon, 2014). The

rule of thumb is that when Dii is greater than 4/n then that point is regarded

as influential point. Cook’s distance is also used in Poisson regression to detect

influential points. The simplified formula for Cooks distance for poisson regression
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is given by

Di =
χ2
i

P + 1
∗ hii

1− hii

(2.14)

where χ2
i is the value of chi-square, P is the number of covariates in the model

and hii is the leverage point (Nurunnabi et al., 2014). The point is regarded as

influential point if it is greater than 4/(n-1).

2.6.2 DFFITS

Another method for finding influential observations is Dffits (Uraibi, 2019), which

measures impact of i-th case on fitted value ŷi when i-th observation is deleted

from the data, Dffits calculate the change in fit (Khan, Amanullah, Aljohani, &

Mubarak, 2021). For logistic regression model, the Dffits is defined as;

DFFITSi =
ŷi − ŷi(−i)

σ̂(−i)

√
(1− hii)

(2.15)

where ŷi(−i) is fitted response when i-th observation is deleted, hii is leverage

and σ̂(−i) is estimated standard error when i-th observation is deleted (Uraibi,

2019). The Dffits can also defined as

DFFITSi = spri

√
hiiθ̂i(1− θ̂i)

(1− hii)[θ̂i(1− θ̂i)]−i
(2.16)

where spri is Studentized Pearson residual and hii is leverage (Uraibi, 2019). When

the point has Dffitsi > 2 then that point is influential observation (MESTAV,

2019). Dffits are also used in poisson regression where they are used to detect
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influential points. The Dffits for poisson regression are given by below formula

DFFITSi =
ŷi − ŷi(i)√

hii

(2.17)

ŷ is the predicted dependent variable before deleting case i, ŷi(i) is predicted

dependent variable after deleting case i and hii is the leverage. If DFFITSi

is greater than 2
√
(P + 1)/n then that observation is influential point.

2.6.3 Dfbetas

Another method to detect influential observation on each regression coefficient is

to determine how much that coefficient changes when the observation is deleted.

The Dfbetas statistic is defined as the standardized difference between a regression

coefficient before and after the removal of the jth observation (Dattalo, 1994).

Dfbetas is expressed by;

DFBETASji =
β̂j − β̂i

j√
s2(i)cjj

(2.18)

Where β̂j is estimated j-th regression coefficient, β̂i
j is is estimated j-th regression

with i-th observation deleted and cjj is the j-th element of (XTX)−1. An observation

is regarded as influential point if DFBETASji >
√

2
n
, where n is sample size

(Ghosh, 2022).

Cook’s distance and Dffits were used in the study done by (Ghosh, 2022). The

main objective of the study was to extrapolate from the pre-existing deletion

diagnostics defined for detecting influential points for binary logistic regression.

22



The study used modified kyphosis data containing 81 children who have had

corrective spinal surgery. The dependent variable was whether a post-operative

deformity (Kyphosis) is ‘present’ or ‘absent’ in an individual and the independent

varibles were the number of vertebrae involved in the operation and the beginning

of the range of vertebrae involved in the operation. The results from Cook’s

distance and the Dffits showed that there were no influencial points in the model

since all points were less than 5.

2.7 Diagnostic statistics for Leverage

Leverage values are very important in logistic regression model. Leverage values

reveals which observations in the X-space of the data are responsible for coming

up with unusual fitted responses (Imon & Hadi, 2013).

2.7.1 Pregibon Leverage

Pregibon leverage, denoted by hii is i-th diagonal element of n× n estimated hat

matrix H (S. K. Sarkar et al., 2011). In the logistic regression, the H matrix is

defined by

H = V 1/2X(XTV X)−1XTV 1/2 (2.19)

where V is a diagonal matrix with size of n × n containing θ̂i(1 − θ̂i) and X is

n×(p+1) matrix (Imon & Hadi, 2013; S. K. Sarkar et al., 2011). The i-th diagonal

element of matrix H for logistic regression model is defined as

hii = θ̂i(1− θ̂i)x
T
i (X

TV X)−1xi (2.20)
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Where xT
i =[1, x1i, x2i, ...xpi] which is 1 × p vector of observed covariates for i-th

element (Imon & Hadi, 2013). When the point has hii > 3p/n then that point is

regarded as high leverage point. (Fitrianto & Wendy, 2016).

Pregibon leverage was used in the study by (Imon & Hadi, 2013) for detecting

high leverage points in logistic regression. The main objective of the study was

to identify multiple high leverage points in logistic regression. The study used

artificial data where the values of Y were given in a way that the first five values

were set to 0, the next five to 1 and the whole sequence was repeated once again.

The results showed that there were no high leverage points in the logistic regression

model.
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CHAPTER 3

METHODOLOGY

3.1 Study Population and Sampling Techniques

The secondary data from 2015-2016 Malawi demographic Health Survey (MDHS)

were used. The data were collected between October, 2015 and February, 2016 by

National Statistical Office (NSO) of Malawi in conjunction with the Ministry of

Health (MoH) and Community Health Services Unit (CHSU). Stratified sampling

with selected two stages was used in 2015-2016 MDHS. In first stage, 850 Standard

Enumeration Areas (SEAs), 173 SEAs from urban areas and 677 SEAs were

selected with probability proportional to the SEA size and with independent

selection in each sampling stratum. In the second stage, 30 households per urban

cluster and 33 households per rural cluster were selected with an equal probability

systematic selection from the newly created household listing.

The data for children were collected from the women aged 15-49 who were either

permanent residents of the selected households or visitors who stayed in the household

the night before the survey. In this study, the sample size was 15112 children aged

0 to 59 months.
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3.2 Geographic Location and Population Distribution

The data were collected in all 28 districts in Malawi. Malawi is a landlocked

country in south-east Africa. Malawi is found in a land between Zambia and

Mozambique and in the north shares a border with Tanzania (Kumbuyo, Yasuda,

Kitamura, & Shimizu, 2014). The area of Malawi is 118, 484km2 in which 94, 276km2

is land and 24, 208km2 is covered by water (Kaombe & Namangale, 2016). According

to Malawi housing census survey 2018 the population of Malawi is 17, 563,749

people.

3.3 Statistical methods

The dependent variable used in this study was whether the child had diarrhoea

2 weeks before the survey. The independent variables were age of the child

(0-59 months), sex of child, location (urban and rural), toilet facility (shared

or not), mother’s education, source of drinking water, region and wealth index.

The variables were taken from the studies of (Kaombe & Namangale, 2016) and

(Getachew et al., 2018) since there were found to be associated with child diarrhoea.

The binary logistic regression model given equation (1.1) was used in this study.

This model was used because the dependent variable, total number of under-5

diarrhoea cases in past two weeks before the survey was following binomial distribution.

Let P (diarrhoea = Y es) = θi be the probability of success, P (diarrhoea =

No) = 1 − θi be the probability of failure and diarrhoea outcome Y on the ith

child be Y es (coded 1) for presence of diarrhoea and No (coded 0) for absence
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of diarrhoea. Then Y is Bernoulli variable. The total number of cases in one

observation
∑

(Y = 1) was distributed as Bernoulli(θ), since the Y was Bernoulli

variable with the probability of presence of diarrhoea θ. Since the number of

children n was fixed, then total number of cases in n observations
∑

(Y = 1) was

distributed as binomial(n, θ). The exponential form with natural parameter is

defined by;

f(y;n, θ) = exp[log

(
n

y

)
+ n log(1− θ) + y log(

θ

1− θ
)] (3.1)

θ which was the probability that a child had diarrhoea which was assumed to

be dependent on some of the characteristics of the child. The assumption was

made that the relationship between θ and the characteristics of the child x was

non-linear, which was the logistic function given by

θ(x) =
exp(β0 + β1x1 + ...+ βpxp)

1 + exp(β0 + β1x1 + ...+ βpxp)
(3.2)

where β0, β1...βp are coefficients of independent variables. Then the logistic function

was put in linear form as

log(
θ(x)

1− θ(x)
) = β0 + β1x1 + ...+ βpxp (3.3)

where
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X1 = Age of child (months)

X2 = Region where the child is coming from

X3 = If the household is sharing the toilet

X4 = Sex of the child

X5 = Breast feeding

X6 = Wealth index

X7 = Location

X8 = Mothers education

X9 = Source of drinking water

The maximum likelihood estimation was used to estimate the values of estimates

of coefficients as per methods discussed in Section 1.2.

3.4 Computations of diagnosis statistics

Data analysis was done using STATA 15 and R 4.0.5. Participants with missing

data were dropped and descriptive analysis was done, and percentages of each

variable used in the study were reported. Pearson’s chi-square test was performed

to find if there was association between dependent variable and each independent

variable. Binary logistic regression models were fitted in STATA to find the

estimates and the AIC. The AIC was used to find the best model. The results

from binary logistic regression models were reported in odds together with their

correspondent 95% confidence interval.

To check for outliers, Pearson’s residual, Deviance residuals and Studentized

Pearson residual were used. First, estimated logistic probabilities were computed
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using STATA and diagonal elements of hat matrix were computed using R. Pearson

residual was calculated using this formula;

pri =
yi − θ̂i(X)√

θ̂i(X)(1− θ̂i(X))
(3.4)

where θ̂i(X) are the fitted values and yi are observed values. Then the graph

of Pearson residual against estimated logistic probability was plotted to assess

if there were outliers. The points which were greater than 3 were regarded as

outliers. These were dropped and the logistic regression was fitted again to data

to observe the impact of outliers.

Deviance residual was also used in the study to check for outliers. Deviance

residual was calculated using this formula;

di = sign(yi − θ̂i(X)){−2[yI log θ̂(X) + (1− yi)log(1− θ̂i(X))]}1/2 (3.5)

Then the graph of deviance residuals against predicted probabilities was plotted.

The cases which had values greater than 2 were regarded as outliers and were later

dropped. The logistic regression was fitted again without those outliers.

Studentized residual was also used to check for outliers. Studentized residual was

calculated using this formula;

Spi =
yi − θ̂i(X)√

θ̂i(X)(1− θ̂i(X))(1− hii)
=

pri√
1− hii

(3.6)
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Then graph of studentized residuals against predicted probabilities was plotted.

The cases which had values above 3 were dropped because they were regarded

as outliers. Then, the binary logistic regression was fitted again without those

outliers.

To check for multicollinearity, Variance Inflation Factor(VIF) was used. For VIF,

every independent variable was fitted as dependent against remaining independent

variables to calculate R2. For independent variables with 2 possible outcomes,

binary logistic regression model was used and independent variables with more

than 2 possible outcomes multi-level logistic regression model was fitted. After

getting R2s tolerance was calculated using this formula

Tolerance = 1−R2. (3.7)

After getting Tolerance for each independent variable then VIFs were calculated

using this formula:

V IF =
1

Tolerance
=

1

1−R2
. (3.8)

After getting VIFs, then the results were interpreted.

To check for influential points on β̂ Cook’s distance was used. Cook’s distance

was calculated using this formular;

CDi =
(spri)

2hii

1− hii

. (3.9)
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The graph of Cook’s distance and index was plotted. Using CDi, the cases with

values greater than 1 were regarded as influential points on β̂.

Dffits were also used to detect influential points. The dffits were calculated using

the formula;

DFFITSi = spri

√
hiiθ̂i(1− θ̂i)

(1− hii)[θ̂i(1− θ̂i)]−i
(3.10)

Then the graph of Dffits and cases was plotted. Cases with values greater than 2

were regarded as influential points.

Diagnostic for leverage was also necessary in this study, so Pregibon’s leverage

was used. Pregibon’s leverage was computed using this formula;

hii = θ̂i(1− θ̂i)x
T
i (X

TV X)−1xi (3.11)

Then, the graph of Pregibon’s leverage and index was plotted. Cases which

had values greater than 0.0008 were regarded as high leverage points and were

dropped. Then, the binary logistics regression was fitted again without those high

leverage points in order to determine if the removed leverage points had effects on

coefficients and the confidence intervals.
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CHAPTER 4

RESULTS

4.1 Descriptive Analysis

There were 15,112 children that were included in this study, 11,976(79%) children

had no diarrhoea and 3,136 (21%) children had diarrhoea in the last 2 weeks

before the time of the survey. The distribution of cases is summarized in Table

4.1. It was shown that the cases were high in breastfeeding children, southern

region and rural areas. Also, Pearson chi-square test of association results showed

that breast feeding and all other factors were associated with diarrhoea except

place of residence and source of drinking water. Place of residence and source of

drinking water were not associated with childhood diarrhoea because their p-values

were greater that 0.05. The remaining variables were associated with childhood

diarrhoea because their p-values were less than 0.05.
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Table 4.1: Social demographic characteristics of respondents, sample size= 15,112

VARIABLE CASES (%)
3136 (21 %)

CHI-SQUARE
P-VALUE

BreastFeeding < 0.001
No 1,183 (17)
Yes 1,953 (24)
Region < 0.001
North 475 (17)
Central 1,221 (23)
Southern 1,440 (21)
ToiletShared < 0.001
No 1,833 (19)
Yes 1,303 (24)
Sex < 0.001
male 1,665 (22)
female 1,471(19)
Wealth Index < 0.001
poorest 692 (23)
poorer 710 (22)
middle 613 (20)
richer 604(20)
richest 517 (18)
Location 0.5
urban 538 (21)
rural 2,598(21)
Age (months) < 0.001
0-12 917(27)
13-24 1,013(34)
25-36 601(20)
37-48 385(13)
49 + 222(8)
Mother
Education

< 0.001

no education 307 (17)
primary 2,177(22)
secondary 611 (20)
tertiary 41(15)
Source of
water

0.45

piped water 693 (21)
protected wells 2,013(24)
unprotected
wells

255(13)

surface water 175 (12)
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4.2 Logistic regression estimation results

AIC is a mathematical method of finding a best model. The smaller the value

of AIC, the better the model. The AIC is calculated from number of covariates

in the model and the maximum likelihood estimate of the model. Model 1 had

AIC of 14542.66, Model 2 had AIC of 14542.83, Model 3 had AIC of 14542.49

and Model 4 had AIC of 14537.63. The results from AIC showed that Model 4

was best model since it had lowest AIC among all 4 models. The table below

shows the logistic regression estimation results for all 4 models. The model 1 used

all independent variables for the study and model 2 source of drinking water was

dropped since it was less significant. Breast feeding and location were dropped for

model 3 and mother education and wealth index were dropped for model 4.

FromTable 4.2, the results showed that the significant predictors of child diarrhoea

were; region where the child is coming from, toilet shared, sex of the child and age

of the child. The results showed that children from the central region and southern

region were more likely to catch diarrhoea than children from the northern region.

The children from the central region had 52% higher odds than children from

northern region. The children from southern region had 30% higher odds than

children from northern region.

The results showed that the children from families that were sharing toilet were

more likely to catch diarrhoea than children from families that were not sharing

the toilet. The children from the families that were sharing the toilet had 31%

higher odds compared to children from families that were not sharing the toilet.
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Females were less likely to catch diarrhoea compared to males. The odds of

catching diarrhoea were 15% lower for females compared to males.

The odds of catching diarrhoea in children of age (13-24) months were 41 % higher

compared to the children with age of (0-12) months. The odds were lower by 32%

in children with age of (25-36) months, lower by 61% in children with age of

(37-48) months and lower by 76% in children with age of (49+) months compared

to children with age of 0-12 months.
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Table 4.2: Logistic regression model estimates results

Child
Characteristics

Model 1
OR(95% CI)

Model 2
OR(95% CI

Model 3
OR(95% CI

Model 4
OR(95% CI

BreastFeeding
No
Yes 0.93(0.83-1.06) 0.93(0.84-1.03)
Region
North
Central 1.57(1.35-1.73) 1.51(1.33-1.71) 1.52(1.36-1.72) 1.52(1.36-1.72)
Southern 1.31(1.16-1.48) 1.29(1.15-1.46) 1.31(1.16-1.40) 1.31(1.16-1.40)
ToiletShared
No
Yes 1.27(1.18-1.39) 1.27 (1.17-1.39 1.29(1.18-1.39) 1.29(1.18-1.39)
Sex
male
female 0.85(0.78-0.92) 0.85(0.78-0.92 0.85(0.78-0.92) 0.85(0.78-0.92)
Wealth Index
poorest
poorer 0.98(0.86-1.11) 0.98(0.86-1.10) 0.98(0.86-1.10)
middle 0.91(0.80-1.03) 0.91(0.80-1.03) 0.91(0.80-1.04)
richer 0.98(0.85-1.12) 0.97(0.85-1.10) 0.99(0.87-1.13)
richest 0.84(0.72-0.99) 0.80(0.67-0.94) 0.86(0.74-0.101)
Location
urban
rural 0.87(0.75-1.01) 0.87(0.78-1.01)
Age (months)
0-12
13-24 1.39(1.25-1.55) 1.39(1.25-1.55) 1.39(1.25-1.55) 1.39(1.25- 1.55)
25-36 0.64(0.56-0,74) 0.65(0.56-0,74) 0.65(0.56-0,74) 0.65(0.56-0,74)
37-48 0.38(0.33-0.44) 0.38(0.33-0.44) 0.38(0.33-0.44) 0.38(0.33-0.44)
49 + 0.23(0.20-0.27) 0.23(0.20-0.28) 0.23(0.20-0.28) 0.23(0.20-0.28)
Mother
Education
no education
primary 1.34(1.17-1.54) 1.34(1.17-1.54) 1.40(0.98-1.50)
secondary 1.25(1.06-1.47) 1.25(1.06-1.47) 1.29(0.95-1.40)
tertiary 0.93(0.63-1.36) 0.93(0.63-1.36) 0.95(0.59-1.47)
Source of water
piped water
protected wells 0.98(0.88-1.11)
unprotected wells 0.97(0.81-1.17)
surface water 0.95(0.78-1.17)
AIC 14542.66 14542.83 14542.49 14537.63
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4.3 Results for outliers from fitted model

The methods which were used in this study for checking the presence of outliers

were; Pearson’s residual, Deviance residual and Studentized Pearson residual (Table

4.3). The good method of looking at outliers is by graphing residuals against index

or predicted probabilities. The residual plots showed 2 trends because the residuals

are defined as 1− θ̂i for Y=1 and −θ̂i for Y=0. The results are further discussed in

the following subsection. Table 4.3 showed Index represented as Child i, Residual,

Pearson Residual, Leverage, Studentized Residual and Deviance. The results of

Table 4.3 were interpreted using Figures below.

Table 4.3: Estimates of Fitted values(θ̂i), Residual(εi), Pearson residual (pri),
Leverage(hii), Studentized residual(spri) and Deviance residual (dri) upon fitting
binary logistic regression model to diarrhoea data

Child i Yi θ̂i εi pri hii spri dri

1 0 0.07856 −0.07856 −0.29199 0.00046 −0.29205 −0.03178
2 0 0.36951 −0.36951 −0.76554 0.00067 −0.76580 −0.35470
3 0 0.17671 −0.17671 −0.46330 0.00070 −0.46346 −0.11020
4 0 0.07856 −0.07856 −0.292 −0.292 0.00046 −0.29206
5 0 0.36951 −0.36951 −0.76554 0.00067 −0.7658 −0.3549
6 0 0.122 −0.122 −0.37274 0.00047 −0.37283 −0.06223
7 0 0.21908 −0.21908 −0.52967 0.00059 −0.52982 −0.15407
8 0 0.19249 −0.19249 −0.48823 0.00054 −0.48837 −0.12587
9 0 0.21908 −0.21908 −0.52967 0.00059 −0.52982 −0.15407
10 1 0.26071 0.73929 1.68394 0.00057 1.68442 1.21222
...

...
...

...
...

...
...

...
15103 0 0.21441 −0.21441 −0.52244 0.00074 −0.52263 −0.14896
15104 1 15576 0.84424 2.32815 0.00066 2.32892 1.62808
15105 0 0.0619 −0.0619 −0.25688 0.00045 −0.25694 −0.02213
15106 0 0.08372 −0.08372 −0.30227 0.00047 −0.30234 −0.035
15107 0 0.27819 −0.27819 −0.62081 0.00087 −0.62108 −0.22462
15108 0 0.13551 −0.13551 −0.39593 0.00057 −0.39604 −0.07313
15109 0 0.10709 −0.10709 −0.34631 0.00062 −0.34642 −0.05097
15110 0 0.061903 −0.0619 −0.25688 0.00045 −0.256939 −0.02213
15111 0 0.27819 −0.27819 −0.62081 0.00087 −0.62108 −0.22462
15112 0 0.0619 −0.0619 −0.25688 0.00045 −0.25694 −0.02213
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4.3.1 The Pearson’s Residual results

Figure 4.1 shows the graph of Pearson’s residuals against predicted probabilities.

The results showed that there were some potential outliers since some of the cases

were found outside the range of ±3. 215 (1.42 %) cases out of 15112 cases.

Figure 4.1: Pearson’s residuals vs Estimated logistic probability

4.3.2 Re-fitted model model estimates upon removing outliers detected

by Pearson residual

Table 4.4 shows the estimation of the binary logistic regression model. Comparison

was made between the fitted model (with outliers) and re-fitted model (without

outliers) using odds ratios and the width of 95% confidence intervals. The significance

of independent variables was not affected by dropping of outliers confidence intervals

did not include the value 1. The width of confidence interval is difference between

the largest number and lowest number of the interval.
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The odds ratio of children catching diarrhoea increased for children from central

region, children from southern region, children from families that shared toilet and

children with age of (13-24) months. While the odds ratio of catching diarrhoea

decreased for female children, children with age of (37-48) months and children

with age of (49+) months. The odds did not change for children with age of

(25-36) months.

The results showed that the width of 95% CI increased for children from central

region, children from southern region, children from families that were sharing

toilets and children with age of (13-24) months. The width of 95% CI did not

change for female children, children with age (25-36) months and children with age

of (37-48) months. The width of 95% decreased for children with (49+) months.

The change of odds ratios and the width of 95% confidence intervals showed that,

the outliers had affected the estimates of the model.
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Table 4.4: Logistic regression model 4 estimates after removing outliers

Child characteristics Model 4 (with full data)
OR(95% CI)

Model 4 (without outliers)
OR(95% CI)

Region
North*
Central 1.52(1.36-1.72) 1.82 (1.60-2.07)
Southern 1.31(1.16-1.40) 1.50 ( 1.32-1.70)

Toilet shared
No*
Yes 1.29(1.18-1.39) 1.44 (1.32 - 1.57)

Sex
male
female 0.85(0.78-0.92) 0.83 (0.77-0.91)

Age (months)
0-12*
13-24 1.39(1.25- 1.55) 1.42 (1.27- 1.58)
25-36 0.65(0.56-0,74) 0.68 (0.6-0.76)
37-48 0.38(0.33-0.44) 0.35 (0.30-0.40)
49+ 0.23(0.20-0.28) 0.05(0.04− 0.07)

4.3.3 Deviance Residual results

Deviance residuals were plotted against the predicted probabilities. Figure 4.2

showed that there were cases that were outside the range of 2 173(1.4%) indicating

the presence of outliers.
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Figure 4.2: Deviance Residual Plot

4.3.4 Re-fitted model estimates upon removing outliers detected by

deviance residual

Table 4.5 shows the estimates of the binary logistic regression after dropping

outliers identified by deviance residual. The results of the re-fitted model were

compared with results of the fitted model. The odds of children catching diarrhoea

increased for children from central region, children from southern region, children

from families that shared toilet and children with age of (13-24) months. While

the odds of catching diarrhoea decreased for female children, children with age of

(37-48) months and children with age of (49+) months. The odds did not change

for children with age of (25-36) months.

The results showed that the width of 95% CI increased for children from central

region, children from southern region, children from families that were sharing

toilets and children with age of (13-24) months. The width of 95% CI did not
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change for female children, children with age (25-36) months and children with age

of (37-48) months. The width of 95% decreased for children with (49+) months.

The change of odds ratios when the outliers were removed meant that the outliers

were affecting the estimates of the model.

Table 4.5: Logistic regression model 4 estimates after removing outliers

Child characteristics Model 4 (with full data)
OR(95% CI)

Model 4 (without outliers)
OR(95% CI)

Region
North*
Central 1.52(1.36-1.72) 1.78 (1.56-2.02)
Southern 1.31(1.16-1.40) 1.42(1.26-1.62)

ToiletShared
No*
Yes 1.29(1.18-1.39) 1.40 (1.28 - 1.52)

Sex
male
female 0.85(0.78-0.92) 0.81 (0.74-0.88)

Age (months)
0-12*
13-24 1.39(1.25- 1.55) 1.42 (1.27- 1.58)
25-36 0.65(0.56-0,74) 0.68 (0.6-0.76 )
37-48 0.38(0.33-0.44) 0.37 (0.32-0.42)
49+ 0.23(0.20-0.28) 0.08 ( 0.06-0.1)

4.3.5 Studentized Pearson residual results

Figure 4.3 shows the graph of Studentized Pearson residuals against estimated

logistic probabilities. The graph shows that there were some cases that were

outside the range of 3 indicating the presence of outliers. From the Table 4.3

above, 214 (1.42%) cases were outliers out of 15112 cases.
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Figure 4.3: Studentized pearson residuals

4.3.6 Re-fitted model estimates upon removing outliers detected by

studentized Pearson residual

Table 4.6 shows the estimates of the binary logistic regression. There was a

change in odds ratios and the width of 95% CI upon removing outliers in the

model. There was an increase of odds of catching diarrhoea for children from

central region, children from southern region, children from families that shared

toilet and children with age of (13-24) months. There was a decrease of odds of

catching diarrhoea for female children, children with age of (37-48) months and

children with age of (49+) months. The odds did not change for children with age

of (25-36) months.

The results also showed that there was an increase of width of 95% CI for children

from central region, children from southern region, children from families that

were sharing toilets and children with age of (13-24) months. The width of 95%
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CI did not change for female children, children with age of (25-36) months and

children with age of (37-48) months. The width of 95% CI decreased for children

with age of (49+) months.

The change of width of confidence intervals and odds ratios showed that the

outliers had affected estimated odds.

Table 4.6: Logistic regression model 4 estimates after removing outliers

Child characteristics Model 4 (with full data)
OR(95% CI)

Model 4 (without outliers)
OR(95% CI)

Region
North*
Central 1.52(1.36-1.72) 1.82 (1.59-2.02 )
Southern 1.31(1.16-1.40) 1.5 (1.32-1.70)

Toilet shared
No*
Yes 1.29(1.18-1.39) 1.44 ( 1.32 - 1.57 )

Sex
male
female 0.85(0.78-0.92) 0.83(0.77-0.91)

Age (months)
0-12*
13-24 1.39(1.25- 1.55) 1.42 (1.27- 1.58)
25-36 0.65(0.56-0,74) 0.68 (0.6-0.76)
37-48 0.38(0.33-0.44) 0.35 (0.30-0.40)
49+ 0.23(0.20-0.28) 0.05(0.04-0.07)

In summary, the results from Pearson’s residual showed that 215 cases were

outliers, Deviance residual showed that 173 cases were outliers and Studentized

Pearson residual showed that 214 cases were outliers. 215, 173 and 214 cases

were mixture of same individuals and new individuals. The re-fitted models after

removing outliers showed that there was a change in odds ratios and width of 95%

confidence interval.
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4.4 Results for Multicollinearity

To check if independent variables were not dependent on each other, Variance

Inflation Factor (VIF) was used.

4.4.1 Variance Inflation Factor VIF

To check for multicollinearity using VIF, every independent variable was fitted as

dependent against remaining independent variables to calculate R2s. After getting

R2s, Tolerance was calculated. Then VIF was calculated by finding the reciprocal

of Tolerance. Table below summarizes the results. From Table 4.7, VIF of every

variable used in the study was 1 which is less than 10 that indicated that there

was absence of multicollinearity.

Table 4.7: Results of R-squared, Tolerance and VIF

VARIABLE R-SQUARED TOLERANCE VIF
Sex 0.0004 0.9996 1
age 0.0005 0.9995 1
Region 0.0016 0.9984 1
Toilet Shared 0.0025 0.9975 1

4.5 Results for influence of individual children

on β̂ and ŷi

The methods which were used in this study for checking influential points were

Cook’s distance, Dfbetas and Dffits. The table below summarizes the results of

Cook’s distance and Dffits.
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Table 4.8: Influence statistics and leverage results

i Yi hii spri CDi Dffitsi
1 0 0.00047 -0.29206 3.89907E-05 -0.00882

2 0 0.00067 -0.76580 0.00039 -0.02529

3 0 0.00070 -0.46346 0.00015 -0.01680

4 0 0.00046 -0.29206 3.89907E-06 -0.00882

5 0 0.00067 -0.76580 0.00039 -0.02529

6 0 0.00047 -0.37283 6.54621E-05 -0.01129

7 0 0.00059 -0.52982 0.00017 -0.01745

8 0 0.00054 -0.48837 0.00013 -0.01552

9 1 0.00059 -0.52982 0.00017 -0.01745

10 1 0.00057 1.68442 0.00017 0.04007
... ... ... ... ... ...

15103 0 0.00074 -0.52263 0.0002 -0.01933

15104 1 0.00066 2.32892 0.00359 0.05064

15105 0 0.00045 -0.25693 3.00443E-05 -0.00777

15106 0 0.00047 -0.30234 4.31522E-05 -0.00927

15107 0 0.00087 -0.62108 0.00037 -0.02432

15108 0 0.00060 -0.39604 9.36712E-05 -0.01345

15109 0 0.00062 -0.34642 7.41666E-05 -0.01207

15110 0 0.00045 -0.25694 3.00443E-05 -0.00778

15111 0 0.00087 -0.62108 0.00034 -0.02432

15112 0 0.00045 -0.25694 3.00443E-05 -0.00778
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4.5.1 Cook’s Distance

Cook’s distance is used to assess influential points. Table 4.8 shows Cook’s

distance represented by CDi. Figure 4.4 shows the graph of Cook’s distance

vs Estimated probabilities. The graph shows that there was no point that was

greater than 1. This meant that there was no influential point on β̂. This

contradicts estimates from re-fitted model upon removing outliers in previous

section. However, generalized Cook’s distance estimated general influence of a

child on all parameters. While the estimates from refitted model were per each

independent variable. In addition, the Cook’s distance values estimate influence

of individual child on regression parameters, whereas the refitted models were

estimating joint influence of a group of outlier children on the same regression

parameters.

Figure 4.4: Cook’s distance vs index
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4.5.2 Dffits

Dffits were also used to detect influential points. Table 4:8 shows the summary of

dffits. The dffits were plotted against the estimated probabilities and the results

are shown in Figure 4.5 below. The graph showed that there was no point that

was greater than 2. This meant that there was no influential points.

Figure 4.5: Dffits vs index

4.5.3 DFBetas for Covariates

Dfbetas were used to detect influential points. The Dfbetas for each independent

variable were plotted against Index.

4.5.3.1 Sex

The graph below shows that there was no points outside the range of 0.01 and

-0.01. This meant that there was no influential points
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Figure 4.6: DFbetas vs index

4.5.3.2 Region

The results were similar for Dfbetas for region. The Figure 4.7 below showed

that there were no influential points since there were no point outside the range

of 0.01 and -0.01.

Figure 4.7: DFbetas vs index
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4.5.3.3 Toilet Shared Variable

Figure 4.8 shows that there was not influential points since there was no point

which was outside the boundaries of 0.01 and -0.01.

Figure 4.8: DFbetas vs index

4.5.3.4 Age

The graph of the Dfbetas vs Index below shows that there was no point outside

the boundary of 0.01 and -0.01. This meant that there were no influential points

in the model.
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Figure 4.9: DFbetas vs index

In summary, results from Cook’s distance, Dfbetas and Dffits showed that

there were no individual influential points in the model.

4.6 Results for leverages of children on fitted

values

Pregibon’s leverage also known as hat diagonal was used to detect high leverage

points. Figure 4.10 below shows the Pregibon’s leverage vs index. The graph

showed that there were points which were above 0.0008 which meant that there

were high leverage points. 1,284 points were found to be high leverage points using

Pregibon’s leverage. These high leverage points were dropped from the data and

the logistic model was fitted again to see if these points were affecting the results.
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Figure 4.10: Pregibon leverage vs index

4.6.1 Refitted model estimates after dropping high leverage points

Table 4.9 shows the estimates of binary logistic regression after dropping high

leverage points. There was a change in odds and the width of 95% CI upon

removing high leverage points. The odds of catching diarrhoea decreased for

children from central region, children from southern region, children from families

that shared toilet and female children. There was an increase of odds of catching

diarrhoea for children in all age groups.

The results shows that there was an increase of width of 95% confidence interval

for children from central region, children from southern region, children from

families that shared toilets, children with age of (13-24) months, children with

age of (37-48) months and children with age of (49+) months. The width of 95%

confidence interval did not change for female children and children with age of

(25-36) months.
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High leverage points had jointly greater influence on the estimated regression

parameter values that why the odds and the width of 95% CI were changing upon

removing those points.

Table 4.9: Logistic regression model estimates results after removing leverage
points

Child
characteristics

Model 4 (with full
data) OR(95% CI)

Model 4 (without
outliers) OR(95% CI)

Region
North*
Central 1.52(1.36-1.72) 1.50 (1.27-1.75)
Southern 1.31(1.16-1.40) 1.26 (1.07-1.47)

ToiletShared
No*
Yes 1.29(1.18-1.39) 1.30 (1.19 - 1.43)

Sex
male
female 0.85(0.78-0.92) 0.84 (0.77-0.91)

Age (months)
0-12*
13-24 1.39(1.25- 1.55) 1.52 (1.34- 1.72)
25-36 0.65(0.56-0,74) 0.70 (0.62-0.78)
37-48 0.38(0.33-0.44) 0.40 (0.35-0.46)
49+ 0.23(0.20-0.28) 0.25 (0.21-0.29)
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CHAPTER 5

DISCUSSION, CONCLUSIONS AND

RECOMMENDATIONS

5.1 Discussion

The width of 95% confidence intervals were increasing because the removal of

outliers increased the standard deviations of some of the parameter estimates and

the width of 95% confidence intervals were decreasing because the removal of

outliers decreased the standard deviations of some of the parameter estimates.

The odds were increasing or decreasing because the removal of outliers were jointly

influential on the parameter estimates. The reasons why outliers were present in

this study could be due to human errors such as keypunch errors, malfunction of

instruments or due to natural deviations from the population. Although the study

used few independent variables, this does not cause outliers to be present in the

study. The study also showed that Studentized Pearson residuals performed well

compared to Deviance residuals and Pearson’s residuals since the coeffiecient of

determination was bigger in model where Studentized Pearson residual was used

compared to models where Deviance residual and Pearson’s residual were used.
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This study used deleting as a method of dealing with outliers but they are many

ways of treating outliers. Changing the value of outliers is another way of treating

outliers. This is done by changing the values of outliers to something more

representative of your data set (Cousineau & Chartier, 2010). The disadvantage

of this method is that it is difficult to apply this method when you have a lot

outliers. Another method of dealing with outliers is by using non maximum

likelihood estimation such as Lasso (Peng, Luo, & Gao, 2022). In this method

outliers are removed and replaced with interpolated values. The advantage of

using this method is that there is no decrease of sample size. Another method of

dealing with outliers is transformation of the regression both sides. Using methods

like robust regression can help in minimising the effect of outliers by giving little

weight to extremely wild outliers (Jung, Lee, & Hu, 2016).

The multicollinearity was not found in this study because there were not a lot

of independent variables and also there was no independent variable which was

calculated from other independent variables. The results were not agreeing with a

study done by (Amare, Ahmed, &Mehari, 2019) which was looking at determinants

of nutrition status among children under 5, multicollinearity was found. Some of

the independent variables which were used were region, sex of child and age of

child. Using variance inflation factor, multicollinearity was found among independent

variables such as birth interval variable was then removed from the binary logistic

regression model.

Influential points were not found in the model because individual Cook’s distance
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and Dffits were used to check for all coefficients used in the study. If Cook’s

distance and Dffits were used to check for each coefficient, one at a time, influential

points could be found. The results were agreeing with a study done by (Nurunnabi

et al., 2009) which looked at identification of multiple influential observations in

logistic regression model. The dependent variable was post-operative deformity

(Kyphosis) which had 2 levels namely present and absent in children and the

independent variables were the number of vertebrae involved in the operation and

the beginning of the range of vertebrae involved in the operation. Using the Cook’s

distance showed that there were no influential points. Dffits were used in a study

done by (MESTAV, 2019) which focused on detection and diagnostic methods of

multiple influential points in binary logistic regression model in animal breeding.

The outcome variable was coded as 1 for lambed and 0 for un-lambed in relation

to fertility rate and the independent variables were weaning weight, fleece weight

and yearling weight. Dffits showed that there were no influential points since all

cases were less than 2.

The model was also checked for the presence of high leverage subjects using

Pregibon’s leverage. The results showed that there were high leverage subjects

in the model. By comparing the fitted model with high leverage subjects and

re-fitted model without high leverage subjects, the results showed that there was

a change in odds and width of 95% confidence intervals. High leverage subjects

increased the standard deviations of some estimates whereby increasing the width

of 95 % confidence intervals. The 95% confidence intervals were decreasing for

some estimates because high leverage subjects decreased the standard deviation
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of those estimates. The odds were increasing or decreasing because the removal of

high leverage points were jointly influential on the parameter estimates. Pregibon’s

leverage was used in a study done by (Fitrianto & Wendy, 2016) which looked at

identification of high leverage points in binary logistic regression. The dependent

variable was weather the cancer patients had lymph node involvement or not and

the independent variables was level of acid phosphates. Pregibon leverage showed

that there were leverages.

There is other methods of diagnosing logistic regression based on predictive ability

(Rufibach, 2010). One of the such methods is Brier’s score. The Brier’s Score is

the method that measures the accuracy of probabilistic predictions. The value

of the Brier’s score ranges from 0.0 and 1.0, where a model with best predictive

ability has a score of 0.0 and the worst predictive ability has a score of 1.0.

5.2 Conclusion

The aim of this study was to demonstrate utilization of the post-estimation diagnostic

statistics that are available for fitting binary regression models to data which

are usually ignored in most applications of the model. In the study, we looked

at diagnostic statistics for outliers, multicollinearity, influential points and high

leverage points. The findings suggest that there is need to check for outliers and

leverages when fitting binary logistic regression using childhood diarrhoea MDHS

2015-2016 data.

The results showed that there is a need to fully diagnose the binary logistic
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regression because outliers, influential points, leverages and multicollinearity may

be present in the model which may affect the coefficients, p-vales and confidence

intervals as a results wrong inferences and conclusion can be made. The conclusion

made is that significant predictors of child diarrhoea are region where the child

is coming from, if the family is sharing toilet with other families, sex of the child

and age of the child. Therefore, the findings of the study expose the fact that

use of child diarrhoea data that are collected through large surveys like DHS

has to consider analysis of outliers and influential observations before making

conclusions. The study also showed that there was a change in odds and width of

95% CI after removing influential points and outliers. There was a serious change

when Pearson’s residual was used.

5.3 Recommendations

• The study suggest that the analysts should check throughly the fit of the

model to ensure the errors are removed whereby getting good models that

will help in improving child health.

• Another study should be done using multivariate diagnostic statistics for

logistic regression model.

• Another study should be done using Brier’s score to check for predictive

ability
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